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As the vortical disturbances of a shrouded jet pass the sharp edge of the shroud
exit some of the energy is scattered into acoustic waves. Scattering into upstream-
propagating acoustic modes is a potential mechanism for closing the resonance
loop in the ‘howling’ resonances that have been observed in various shrouded jet
configurations over the years. A model is developed for this interaction at the shroud
exit. The jet is represented as a uniform flow separated by a cylindrical vortex
sheet from a concentric co-flow within the cylindrical shroud. A second vortex sheet
separates the co-flow from an ambient flow outside the shroud, downstream of its
exit. The Wiener–Hopf technique is used to compute reflectivities at the shroud exit.
For some conditions it appears that the reflection of finite-wavelength hydrodynamic
vorticity modes on the vortex sheet defining the jet could be sufficient to reinforce the
shroud acoustic modes to facilitate resonance. The analysis also gives the reflectivities
for the shroud acoustic modes, which would also be important in establishing
resonance conditions. Interestingly, it is also predicted that the shroud exit can
be ‘transparent’ for ranges of Mach numbers, with no reflection into any upstream-
propagating acoustic mode. This is phenomenologically consistent with observations
that indicate a peculiar sensitivity of resonances of this kind to, say, jet Mach number.

1. Introduction
1.1. Resonances in shrouded jets

The potential for shrouded jets, or jets fitted with an ejector (see figure 1), to resonate
making high-intensity discrete-frequency sound was first reported almost forty years
ago by Bradshaw, Flintoff & Middleton (1968) and was called howling. Seemingly
similar resonances have also been observed in full-scale turbojet engine test cells (see
Jones & Lazalier 1992; Sebourn & Shope 2005; Massey et al. 1994). Here, intense
tonal pressure fluctuations were observed in the shroud near its inflow end with the
resonance frequency closely matching the first asymmetric acoustic modes expected in
the shroud: the so-called (m, n) = (1, 1) mode, where m and n correspond respectively
to the azimuthal and radial wavenumbers.

How these resonances are sustained inside the shroud is not fully understood. It
is expected that for high amplitudes the acoustic modes can excite the jet instability
mode by perturbing the jet at the nozzle. Generally, jets are receptive to such



408 A. Samanta and J. B. Freund

Shroud

Nozzle

Jet

L

Ro

Ri

M1, T1

M2, T2

Figure 1. Schematic of a shrouded jet reported to howl.

excitations at the nozzle lip and the resulting instabilities should grow by extracting
energy from the jet at their respective frequencies. It is uncertain, however, how
these flow instabilities generate pressure fluctuations to reinforce the shroud acoustic
modes and thereby close the feedback loop. There are several theories for this,
including the one that depends upon jet shock cells, described by Tam, Ahuja &
Jones (1994). But strong resonances have also been observed for subsonic jets. For
example, Bradshaw et al. (1968) report subsonic confined jets that for ranges of Mach
numbers resonate with tones 20 dB above the corresponding non-resonating spectrum
of the jet. Consequently, they speculated that the instability (vorticity) waves supported
by the inner shear layer interact with the nozzle shroud in a way that reflects waves
with pressure fluctuations matching the frequencies of the shroud acoustic modes.
This mechanism for closing the feedback loop was included by Howe (1987) in his
analysis under the assumption that the shroud exit is effectively at a constant pressure.
This is a long-wavelength assumption. In actual situations, however, the wavelength
of the sound in the resonance modes is usually comparable to the shroud length,
which in turn is comparable to its diameter (e.g. Jones & Lazalier 1992; Sebourn &
Shope 2005). It is well known that for open-exit configurations, reflections of out-
going acoustic waves are significantly reduced when these lengths are comparable
(e.g. Levine & Schwinger 1948).

In this paper, we analyse the acoustic reflection of finite-wavelength vortical
disturbances with the goal of illuminating the role of vortical flow disturbances
in sustaining shroud resonances of the kind discussed. The model geometry we
analyse is shown in figure 2. It consists of a semi-infinite cylindrical shroud with a
co-flowing inner jet issuing out of it. The uniform inner, outer and ambient flows are
separated by vortex sheets, with the outer vortex sheet originating at the shroud exit.
The Wiener–Hopf method is used to calculate how vorticity waves on the inner shear
layer scatter at the shroud exit into acoustic waves. Those reflected back upstream into
the shroud have the potential to close the feedback loop. Although the main focus of
this work remains the incident vorticity modes, the reflectivities of finite-wavelength
outgoing acoustic modes are obtained with little extra effort. These are reported both
for completeness and because their reflection is also important for any acoustically
coupled resonance that might occur.

1.2. Analysis as a Wiener–Hopf problem

Acoustic wave reflection from a sharp-ended duct without mean flow was first solved
by Levine & Schwinger (1948) using the Wiener–Hopf method (see Noble 1988). They
obtained analytical expressions for sound waves radiated and reflected from the open
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end of the duct. Mean flow was first included by Carrier (1956), whose analysis was
consistent with taking Lorentz transformation of the no-flow case in a way that yields
solutions both for flow into the duct, which makes the duct-lip singularity integrable,
and for flow out of the duct, where the Kutta condition is automatically satisfied
for this solution method. Later, Homicz & Lordi (1975) seem to have rediscovered
this technique. However, for the exhaust case, a vortex sheet appears at the trailing
edge, which needs to be included in the analysis. Mani (1973) derived a solution for
the two-dimensional case with a velocity discontinuity that was extended by Savkar
(1975) to a cylindrical geometry. However, none of these solutions included instability
waves, since their correct mathematical treatment remained unclear, nor do they
contain any proper treatment of the Kutta condition.

Morgan (1974) and Crighton & Leppington (1974) independently concluded that
when a vortex sheet is shed from a semi-infinite plate the Kelvin–Helmholtz instability
wave must couple to the acoustic field. They recognized that ignoring this wave
yields a fundamentally incorrect field and developed procedures for its inclusion.
The difficulty in identifying the correct Kutta condition formulation at the duct exit
has been explained by Orszag & Crow (1970) and Crighton (1972a, b). The current
accepted practice is to use the full Kutta condition (Crighton & Leppington 1974),
which has experimental support (Bechert & Pfizenmaier 1975).

Munt (1977) was the first to combine all these related theoretical developments to
construct a complete analytical solution for the transmitted waves for a subsonic jet
issuing out of a semi-infinite cylindrical duct. His analysis placed no restriction on
the velocities of the uniform subsonic jet or the co-flow, separated by a cylindrical
vortex sheet, and also accounted for density and temperature jumps across the vortex
sheet. Excellent agreement was obtained with the measurements of far-field directivity
(Pinker & Bryce 1976) and reflection coefficients (see Munt 1990). The near-field
features of Munt’s results were confirmed by Howe (1979) using different analytical
methods.

Using Munt’s framework, the problem of a semi-infinite duct with an infinite
centrebody in a uniform mean flow was first considered by Rienstra (1984). This was
recently extended by Gabard & Astley (2006) to have different velocities inside and
outside the duct with the consequence that instability waves had to be accounted for
in the complete solution. Though the flow with a centrebody rather than a jet is, of
course, significantly different from the present configuration, we use similar techniques
here. Taylor, Crighton & Cargill (1993) analysed the same basic configuration as we
do here (figure 2), but only for plane waves in the long-wavelength limit. Instead
of solving the full Wiener–Hopf problem they solved two subproblems: first, sound
transmission from a cylindrical nozzle into an infinite outer cylindrical duct; and
second, sound transmission from a semi-infinite cylindrical duct containing a co-flow.
These two problems were then matched by using plane-wave coupling. We use a
similar two-part approach to generate the incident vorticity wave. These methods
have also been applied to rotating flows (Heaton & Peake 2005). Uniform mean flow
is, however, sufficient for studying the phenomena of present interest.

Recent works by Veitch & Peake (2007) and Demir & Rienstra (2007) have
considered the far-field sound from the configuration of figure 1 by solving the full
problem using a matrix Wiener–Hopf technique (details in Veitch & Peake 2008). These
papers make an important advance in developing techniques to factor matrix Wiener–
Hopf kernels. In the present work we focus entirely on near-field interactions, where
our scalar approach seems more appropriate since it allows us to separately consider
different incident wave solutions and explicitly compute their individual interactions
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Figure 2. Schematic of the shroud with co-flow.

at the shroud exit. Of course, the full solution provided by matrix Wiener–Hopf
techniques contains these interactions, but it would seem to require significantly more
work to extract the individual interactions of interest. Even after solving the problem
by the matrix approach, Veitch & Peake (2008) employ a scalar approach to identify
how specific interactions contribute to the far-field sound. Obviously, interaction with
the inner nozzle lip, not considered here, becomes important in determining the actual
resonance conditions inside the shroud. We prefer to solve that particular problem by
splitting the configuration of figure 1 into two subproblems, as done by Taylor et al.
(1993) in the long-wavelength limit, which clarifies the physical picture better.

Extension to finite frequencies and vortical waves is essential for the kind of
interaction that we consider. The behaviour of the vorticity wave passing the shroud
edge in the short-wavelength limit is clear. Since the pressure disturbances associated
with subsonic vortex sheet modes decay exponentially away from the sheet, for
vanishingly short-wavelength there is no interaction between the vortex sheet modes
and the shroud exit and thus no reflection. In the long-wavelength limit, such as the
one considered by Taylor et al. (1993) for incident acoustic modes, the only reflected
acoustic mode that the system can support is the plane wave, or more precisely a
quasi-plane wave, since a true plane wave is impossible to define for multiple streams
inside a duct. Our investigation of the observed asymmetric-mode resonances requires
inclusion of modes that only propagate for finite frequencies. In this study, we also
specifically focus on the scattering of the vorticity wave into acoustic modes, which
has not been systematically studied before.

The organization of the paper is as follows. The governing differential equations
and boundary conditions are described in § 2. The Wiener–Hopf solution for a general
incident wave is obtained in § 3. Specific incident waves are defined in § 4, and near-
field visualizations for specific acoustic and vorticity incident modes are presented
in § 5. Reflectivity coefficients are formulated and computed in § 6 for both acoustic
and vorticity incident waves.

2. Formulation
The semi-infinite (−∞ <z < 0) cylindrical shroud has radius Ro (see figure 2).

Its walls are assumed to be rigid, impermeable, and of negligible thickness. The
primary flow in the shroud is a jet of radius Ri <Ro with uniform axial mean flow
velocity v1. The co-flow has uniform axial velocity v2 for Ri < r <Ro. There is also
an ambient flow external to the shroud (r >Ro), which has a uniform axial velocity
of v3. Cylindrical vortex sheets separate these three flows, as shown in the figure. All
the flow velocities are assumed to be subsonic, and for simplicity we assume that the
sound speeds and mean densities of all the flows are constant with c1 = c2 = c3 = c
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and ρ1 = ρ2 = ρ3 = ρ, respectively. Different ρ or c for different streams could be
included in our analysis without substantive modification and might lead to additional
phenomena in the solutions. Quantities are non-dimensionalized by c and Ro, so Mach
numbers are Mi = vi/c and the non-dimensional radius of the jet flow is h = Ri/Ro.

2.1. Governing equations and boundary conditions

The mean flow is perturbed by low-amplitude (linear) waves, which in general are the
superposition of acoustic waves and instability waves on the vortex sheets. The entire
flow field is assumed irrotational except for the vortex sheets. We neglect any viscosity
or thermal conductivity. With these assumptions, the flow field can be expressed as a
velocity potential φt (r, θ, z) satisfying advected Helmholtz equations:(

∂

∂t
+ M1

∂

∂z

)2

φt − �φt = 0, r <h, (2.1a)

(
∂

∂t
+ M2

∂

∂z

)2

φt − �φt = 0, h < r < 1, (2.1b)

(
∂

∂t
+ M3

∂

∂z

)2

φt − �φt = 0, r > 1. (2.1c)

The subscript t in φt indicates the total field, in contrast to φ without subscript, which
we introduce later to indicate the scattered field.

The boundary conditions are the following:
(i) The normal velocity vanishes at the shroud walls, so

∂φt

∂r
(1−, θ, z) =

∂φt

∂r
(1+, θ, z) = 0, z � 0. (2.2)

(ii) The outer vortex sheet satisfies the usual kinematic condition:(
∂

∂t
+ M2

∂

∂z

)
η(θ, z) =

∂φt

∂r
(1−, θ, z), z > 0, (2.3a)

(
∂

∂t
+ M3

∂

∂z

)
η(θ, z) =

∂φt

∂r
(1+, θ, z), z > 0, (2.3b)

where η(θ, z) is the radial displacement of the sheet.
(iii) The usual dynamic condition requires the pressure to be continuous across the

vortex sheets. For the outer vortex sheet this leads to(
∂

∂t
+ M2

∂

∂z

)
φt (1

−, θ, z, t) =

(
∂

∂t
+ M3

∂

∂z

)
φt (1

+, θ, z, t), z > 0. (2.4)

(iv) The corresponding kinematic and dynamic boundary conditions applied to the
inner vortex sheet are(

∂

∂t
+ M1

∂

∂z

)
ζ (θ, z) =

∂φt

∂r
(h−, θ, z), −∞ <z < ∞, (2.5a)

(
∂

∂t
+ M2

∂

∂z

)
ζ (θ, z) =

∂φt

∂r
(h+, θ, z), −∞ <z < ∞, (2.5b)

where ζ (θ, z) is the radial displacement of the inner sheet,
and (v)(

∂

∂t
+ M1

∂

∂z

)
φt (h

−, θ, z, t) =

(
∂

∂t
+ M2

∂

∂z

)
φt (h

+, θ, z, t), −∞ <z < ∞. (2.6)
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(vi) At the shroud edge, a full Kutta condition is applied. This condition requires
all the available vorticity to be shed from the tip, where the instability wave is parallel
to the trailing edge at z = 0. Mathematically, this means ∂η/∂z = 0 (r = 1, z = 0),
which from (2.3) leads to

φt (1, z) = O
(
z3/2

)
as z → 0+, (2.7)

ensuring that pressure is also finite at the edge. The condition for no vortex shedding
at the shroud tip is

φt (1, z) = O
(
z1/2

)
as z → 0+, (2.8)

which results in a pressure singularity at the edge. We will consider this case briefly
in § 6.2.3 for purposes of comparison.

(vii) A radiation condition applies at infinity, but this is difficult to enforce in a
way that suppresses spurious non-Kelvin–Helmholtz modes which are known to exist
(Crow & Champagne 1971; Lee & Jones 1973). Instead, they are typically suppressed
via a generalized causality statement. For a time dependence of exp(−iωt), ω must
be complex with a positive imaginary part: ω = ωr + iωi = |ω|exp(iδ), 0 � δ � π/2.
A theorem of Jones & Morgan (1974) shows that causality is then ensured for all
possible disturbances for large ωi and thus δ → π/2. Radiation is effectively satisfied
as a consequence. There is a continuum of such causal solutions, but only one of
them satisfies the full Kutta condition (Crighton & Leppington 1974). This particular
solution must include instability waves.

2.2. Incident and scattered fields

The equations of § 2.1 are to be solved for scattered (acoustic) waves for different
incident (acoustic or vortex sheet) waves, which requires the usual decomposition of
the total field φt into incident φi and scattered fields φ:

φt = φi + φ. (2.9)

Assuming harmonic time dependence exp(−iωt) and azimuthal dependence
exp(−imθ), the general scattered field inside a corresponding infinite shroud is

φ(r, θ, z, t) =

∞∑
m=−∞

∞∑
n=1

[B+
mnexp(iμ+

mnωz) + B−
mnexp(iμ−

mnωz)]Ψmn(r)exp{i(mθ − ωt)}.

(2.10)

It has both left (−) and right (+) moving components. The amplitudes B±
mn, the axial

wavenumbers μ±
mn, and the mode shapes Ψmn will be determined for specific incident

and reflected waves in § 4 and § 6. In (2.10), the axisymmetric modes are given by
(0, n), with the plane wave giving Ψ01 = 1. The non-axisymmetric mode cases have
m �= 0. Enforcing the same θ and t dependence on the displacements of the two shear
layers yields

η(θ, z, t) = ξ (z) exp{i(mθ − ωt)}, (2.11a)

ζ (θ, z, t) = γ (z) exp{i(mθ − ωt)}. (2.11b)

The incident wave φi is taken to be a right-propagating mode (m, n). For the
acoustic type incident wave case, since it originates from the inside of the shroud, it is
best defined as a solution of the corresponding infinite, co-flowing shroud. It satisfies
(2.1) and the wall and the inner shear layer boundary conditions: (i), (iv) and (v)
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in § 2.1. The incident wave is thus

φi(r, θ, z, t) =

{
B+

mnΨmn(r) exp(iωμ+
mnz + imθ − iωt) for r < 1,

0 for r > 1.
(2.12)

In this case, the total field φt from (2.9), on applying the harmonic time and azimuthal
dependence, can be rewritten as

φt (r, θ, z, t) = [ψi(r, z) + ψ(r, z)]exp{i(mθ − ωt)}, (2.13)

with

ψi(r, z) = B+
mnΨmn(r)exp(iωμ+

mnz). (2.14)

A more complex approach is necessary to identify incident waves on the inner
vortex sheet, which is developed in detail in § 4.2. However, in the end these waves
are also of the general form (2.14), so both acoustic and vorticity incident waves can
be formulated within a single framework as in the following.

Upon using (2.11), (2.13) and (2.14) and suppressing exp{i(mθ − ωt)}, (2.1)–(2.7)
become

∂2ψ

∂z2
+

1

r

∂

∂r

(
r
∂ψ

∂r

)
− m2

r2
ψ −

(
−iω + M1

∂

∂z

)2

ψ = 0 for r <h, (2.15a)

∂2ψ

∂z2
+

1

r

∂

∂r

(
r
∂ψ

∂r

)
− m2

r2
ψ −

(
−iω + M2

∂

∂z

)2

ψ = 0 for h < r < 1, (2.15b)

∂2ψ

∂z2
+

1

r

∂

∂r

(
r
∂ψ

∂r

)
− m2

r2
ψ −

(
−iω + M3

∂

∂z

)2

ψ = 0 for r > 1; (2.15c)

∂ψ

∂r
(1−, z) =

∂ψ

∂r
(1+, z) = 0 for z � 0, (2.16)

(
− iω + M2

∂

∂z

)
ξ (z) =

∂ψ

∂r
(1−, z) for z > 0, (2.17a)

(
− iω + M3

∂

∂z

)
ξ (z) =

∂ψ

∂r
(1+, z) for z > 0, (2.17b)

(
− iω + M2

∂

∂z

)
[ψ(1−, z) + ψi(1

−, z)] =

(
− iω + M3

∂

∂z

)
ψ(1+, z) for z > 0, (2.18)

(
− iω + M1

∂

∂z

)
γ (z) =

∂ψ

∂r
(h−, z) for −∞ <z < ∞, (2.19a)

(
− iω + M2

∂

∂z

)
γ (z) =

∂ψ

∂r
(h+, z) for −∞ <z < ∞, (2.19b)

(
− iω + M1

∂

∂z

)
ψ(h−, z) =

(
− iω + M2

∂

∂z

)
ψ(h+, z) for − ∞ <z < ∞, (2.20)

ψ(1, z) = O
(
z3/2

)
as z → 0+. (2.21)

3. Wiener–Hopf solution of the scattered field
In this section we develop the Wiener–Hopf solution of (2.15)–(2.21) for a generic

incident mode. In the following section, § 4, specific formulations for acoustic and
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vortical incident waves are developed. A brief summary of the technique is as follows.
First, appropriate half-range Fourier transforms are defined in the axial z-direction
and applied to the governing equations and boundary conditions (see § 3.1). For all
values of r , the transformed functions are analytic inside a strip S in the complex
plane. These transformed expressions are then manipulated algebraically to form the
so-called Wiener–Hopf equation (3.21). Each of the variables and functions in this
equation are then split into two parts (the ‘plus’ and ‘minus’ parts) that are analytic
in the respective half-planes (see § 3.3), which facilitates construction of a function
that is analytic in the whole complex plane. The solution is the inverse transform of
this function (see § 3.3).

3.1. Fourier transforms

The half-range Fourier transform of any function f (r, z) is

f̂ ±(r, s) =

∫ +∞

−∞
f (r, z)H (±z) exp(−iωsz) dz, (3.1)

where H (z) is the Heaviside step function. The inverse transform is

f (r, z) =
ω

2π

∫ +∞

−∞
f̂ (r, s) exp(iωsz) ds, (3.2)

where

f̂ = f̂ + + f̂ −. (3.3)

Applying (3.1) and (3.3) to (2.15) yields three Bessel equations:

1

r

∂

∂r

(
r
∂ψ̂

∂r

)
+

(
ω2λ2

1 − m2

r2

)
ψ̂ = 0 for r <h, (3.4a)

1

r

∂

∂r

(
r
∂ψ̂

∂r

)
+

(
ω2λ2

2 − m2

r2

)
ψ̂ = 0 for h < r < 1, (3.4b)

1

r

∂

∂r

(
r
∂ψ̂

∂r

)
+

(
ω2λ2

3 − m2

r2

)
ψ̂ = 0 for r > 1, (3.4c)

where the radial wavenumbers λ1, λ2 and λ3 are defined as λp = λ+
p λ

−
p for

λ±
p = [1 − s(Mp ± 1)]1/2 for p = 1, 2, 3. (3.5)

The principal branch cuts of the square roots in (3.5) are chosen such that Im [λp] > 0
for s → +∞. This is ensured by defining cuts from s+

p to ∞ along the positive real
s-axis and from s−

p to −∞ along the negative real s-axis with

s±
p = 1/(Mp ± 1) for p = 1, 2, 3. (3.6)

The overlapping half-planes R+ and R−, in which the respective Fourier transforms
(3.1) are analytic can be obtained from these definitions for any δ as

R
±
1 : ±Im(s − s

±
1 ) < ∓ Re(s − s

±
1 ) tan δ for r <h, (3.7a)

R
±
2 : ±Im(s − s

±
2 ) < ∓ Re(s − s

±
2 ) tan δ for h< r < 1, (3.7b)

R
±
3 : ±Im(s − s

±
3 ) < ∓ Re(s − s

±
3 ) tan δ for r > 1. (3.7c)

The domain of regularity of the transformed functions is at the intersection of these
six half-planes, S, as shown in figure 3. For subsonic M1 > M2 > M3, the boundaries
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of S are set by R+
1 and R−

3 . An acceptable inverse Fourier transform path lies in S

along Γ defined by arg s = δ.
A general solution of (3.4) for p = 1, 2, 3 is

ψ̂(r, s) = Ap(s)Jm(λpωr) + Bp(s)H(1)
m (λpωr), (3.8)

where Jm and H(1)
m are respectively the order-m Bessel and Hankel functions of the

first kind. Setting B1 = 0 ensures regular behaviour of ψ̂ as r → 0. Similarly, setting
A3 = 0 ensures radiation at infinity given that Im [λ3ω] in S is positive, for the
definitions of the radial wavenumbers and their branch cuts used in the analysis.
Thus, the solution of (3.4) is

ψ̂(r, s) =

⎧⎪⎨
⎪⎩

A1(s)Jm(λ1ωr) for r <h,

A2(s)Jm(λ2ωr) + B2(s)H(1)
m (λ2ωr) for h < r < 1,

B3(s)H(1)
m (λ3ωr) for r > 1.

(3.9)

The undetermined constants in (3.9) are found by Fourier transforming the
boundary conditions. The transformed vortex sheet displacements, ξ̂+(s) and γ̂ (s),
corresponding to the outer and inner shear layers, are defined according to (3.1). The
outer sheet exists only for z > 0, and thus only has the ‘plus’ transformed part of ξ̂ .
In addition, for convenience, two other quantities are defined that correspond to the
pressure jump across the vortex sheets. These jumps are in the scattered pressures; the
total pressure is, of course, continuous across the sheets. By the definition of scattered
pressure in (2.18) and (2.20) these jumps are

p̂o(s) =

∫ +∞

−∞

[(
−iω+M3

∂

∂z

)
ψ(1+, z)−

(
−iω+M2

∂

∂z

)
ψ(1−, z)

]
exp(−iωsz)dz (3.10)
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for the outer shear layer (z > 0) and the shroud walls (z < 0) and

p̂i(s) =

∫ +∞

−∞

[(
−iω+M2

∂

∂z

)
ψ(h+, z)−

(
−iω+M1

∂

∂z

)
ψ(h−, z)

]
exp(−iωsz)dz (3.11)

for the inner shear layer (−∞ <z < ∞). Applying (3.9) to (3.10) and (3.11) yields

p̂o(s) = −iω
{

(1 − sM3) B3(s) H(1)
m (λ3ω)

− (1 − sM2) [A2(s) Jm(λ2ω) + B2(s) H(1)
m (λ2ω)]

}
, (3.12)

and

p̂i(s) = −iω
{

(1 − sM2) [A2(s) Jm(λ2ωh) + B2(s) H(1)
m (λ2ωh)]

− (1 − sM1) A1(s) Jm(λ1ωh)
}
. (3.13)

Taking a similar approach, applying (3.9) to (2.17) and using (2.16), the Fourier
transform of the kinematic boundary condition on the outer vortex sheet (2.17)
becomes

−i(1 − sM2)ξ̂
+(s) = λ2{A2(s)J′

m(λ2ω) + B2(s)H(1)′
m (λ2ω)}, (3.14a)

−i(1 − sM3)ξ̂
+(s) = λ3B3(s)H(1)′

m (λ3ω). (3.14b)

Here primes denote derivative with respect to the argument of the function. The inner
shear layer displacement given by (2.19) can similarly be transformed to

−i(1 − sM1)γ̂ (s) = λ1{A1(s)J′
m(λ1ωh)}, (3.15a)

−i(1 − sM2)γ̂ (s) = λ2{A2(s)J′
m(λ2ωh) + B2(s)H(1)′

m (λ2ωh)}. (3.15b)

The Fourier transform of the dynamic boundary condition on the outer vortex sheet
(2.18) with application of (3.10) and (2.14) leads to

p̂+
o (s) = B+

mnΨmn(1)
1 − μ+

mnM2

μ+
mn − s

. (3.16)

The corresponding transform of (2.20) using (3.11) reduces to

p̂i(s) = 0, (3.17)

as it must since for the inner shear layer both the total pressures and the scattered
pressures are continuous for our choices of incident waves.

To determine the constants in (3.9), we sequentially combine (3.13), (3.17), (3.15),
and (3.14) to arrive at

A1(s) = − i

λ2

(1 − sM2)
2

1 − sM1

ξ̂+(s)

Jm(λ1ωh)

H(1)
m (λ2ωh) + R(s)Jm(λ2ωh)

H(1)′
m (λ2ω) + R(s)J′

m(λ2ω)
, (3.18a)

A2(s) = − i

λ2

(1 − sM2)
ξ̂+(s)R(s)

H(1)′
m (λ2ω) + R(s)J′

m(λ2ω)
, (3.18b)

B2(s) = − i

λ2

(1 − sM2)
ξ̂+(s)

H(1)′
m (λ2ω) + R(s)J′

m(λ2ω)
, (3.18c)

B3(s) = − i

λ3

(1 − sM3)
ξ̂+(s)

H(1)′
m (λ3ω)

, (3.18d)
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where we have defined

R(s) =
λ(s)Jm(λ1ωh)H(1)′

m (λ2ωh) − H(1)
m (λ2ωh)J′

m(λ1ωh)

Jm(λ2ωh)J′
m(λ1ωh) − λ(s)Jm(λ1ωh)J′

m(λ2ωh)
, (3.19)

with

λ(s) =
λ2

λ1

(1 − sM1)
2

(1 − sM2)2
. (3.20)

The one remaining unknown in (3.18) is ξ̂+, the Fourier transform of the outer vortex
sheet displacement. To determine ξ̂+ we substitute (3.18b)–(3.18d ) into (3.12) and
utilize p̂o = p̂+

o + p̂−
o to arrive at

K(s)ξ̂+(s) − p̂+
o (s) = p̂−

o (s), (3.21)

where p̂+
o is given by (3.16). This manipulation introduces p̂−

o , the pressure jump
across the shroud wall, as a second unknown. Equation (3.21) is the Wiener–Hopf
equation with kernel

K(s) = ω

{
(1 − sM2)

2

λ2

[
H(1)

m (λ2ω) + R(s)Jm(λ2ω)

H(1)′
m (λ2ω) + R(s)J′

m(λ2ω)

]
− (1 − sM3)

2

λ3

H(1)
m (λ3ω)

H(1)′
m (λ3ω)

}
. (3.22)

Though not obvious as formulated, the kernel so-obtained is equivalent to the one
obtained by Taylor et al. (1993) in their ‘plane B sub-problem’, which they solve
for acoustic interactions in the low-frequency limit. We use it to obtain scattering
solutions for finite-wavelength acoustic and vorticity incident waves.

3.2. The kernel

The poles and zeros of the kernel define the characteristics of the problem, the exact
locations of which depend upon the parameters chosen. Since the analysis and the
subsequent contour integrations depend upon the locations of these zeros/poles, it
is important to identify their characteristics (e.g. acoustic or instability modes) and
locations. Figure 3 shows the poles and zeros of (3.22) for one set of parameters. There
are two basic types of zeros and poles. The first correspond to the acoustic shroud
modes and these zeros and poles lie along a curve that asymptotically approaches
π/2 − δ for large |s|. The acoustic poles come from the denominators of (3.22),
and most of them come from the first term. Since this first term’s denominator
corresponds to the characteristic equation of the infinite shroud (see (4.3)), poles from
this denominator match the acoustic modes of an infinite shroud. From figure 4(b),
it is clear that the second-term denominator contributes only two poles for all
parameters investigated. This second term of (3.22) can be thought of as a correction
term that accounts for finite termination of the infinite shroud, as evidenced by M3

appearing only in this term. The poles lying on the real axis for δ → 0 (figure 4a)
correspond to propagating waves, whereas the disturbances associated with the rest
decay away from the shroud exit. In § 4 and § 6, where we select specific incident
and reflected waves, we focus on these propagating waves. Nevertheless, for a short
distance between the shroud exit and the nozzle lip upstream of it, some of the
decaying acoustic components of the reflected wave may be important.

The second type of poles and zeros corresponds to the Helmholtz instability modes
of the vortex sheets. These zeros and pole sit in the fourth quadrant of the complex
plane, as seen in figure 3. The two zeros correspond to modes of the shear layers
downstream of the shroud exit, and the pole corresponds to that of the inner shear
layer upstream of the exit. Unlike the low-frequency case considered by Taylor et al.
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Figure 4. (a) Example locations of the zeros (◦) and poles (×) of K(s) in (3.22) for δ → 0.
(b) Enlarged view of (a) which in addition identifies �, the poles arising from the second term
in (3.22) (see text). Parameters are same as in figure 3.

(1993), for disturbances considered here with wavelengths comparable to the shroud
diameter or shorter, the zero and the pole for the inner shear layer are close to each
other. This is because of the exponential decay of the disturbances away from the
vortex sheet. For moderate wavelengths they only interact weakly with the shroud
walls and the instabilities are nearly the same regardless of their confinement. Though
weak, this interaction is still important from the perspective of generating sound.

We use a Newton–Raphson iterative scheme to compute these zeros and poles with
the derivatives computed using a scheme by Ridders (1982). The close lying zero–pole
pairs require good initial estimates.

3.3. General solutions

A multiplicative split of the kernel (3.22) can be carried out as K(s) = K+(s)K−(s),
where the two factors K+ and K− are analytic, non-zero and have at most algebraic
growth in their respective half-planes. However, it is more convenient to factor the
instability zeros sz1

and sz2
and the pole sp out of the kernel before splitting it

(e.g. Gabard & Astley 2006). This facilitates the application of the residue theorem
in determining the instability part of the scattered solutions (see (3.36), (3.37)).
Accordingly, for incident acoustic waves we take

K(s) = K̃+(s)K̃−(s)U (s), (3.23)

where

U (s) =
(
s − sz1

)(
s − sz2

)
/(s − sp). (3.24)

For an incident vorticity wave, the inner vortex sheet pole acts as the incident mode,
so streamwise wavenumber μ+

mn from (2.14) is μ+
mn = sp . Using (3.24) in this case to

compute terms such as K̃−(μ+
mn) from (A 1) in the Appendix and (3.23), as needed

later in (3.30), is numerically problematic, as U (μ+
mn) becomes singular. It is then best

not to factor out sp as in (3.24). Given the close proximity of sz1
and sp it is also

best to leave sz1
unfactored. The kernel integration contour C (see Appendix A.1) is

simply deformed around both. Thus for the incident vorticity case

U (s) =
(
s − sz2

)
. (3.25)
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In both cases, K̃+ and K̃− are split functions of K/U . Substituting (3.23) into (3.21)
yields

U (s)K̃+(s)ξ̂+(s) − p̂+
o (s)

K̃−(s)
=

p̂−
o (s)

K̃−(s)
. (3.26)

The first term on the left-hand side is analytic in R+, whereas the right-hand-side
term is analytic in R−. Unfortunately, p̂+

o has a pole at s = μ+
mn (see (3.16)) so that

the second term is not analytic in R−. This is resolved by the rearrangement

U (s)K̃+(s)ξ̂+(s) − p̂+
o (s)

K̃−(μ+
mn)

=
p̂−

o (s)

K̃−(s)
+ p̂+

o (s)

[
1

K̃−(s)
− 1

K̃−(μ+
mn)

]
. (3.27)

Since K̃− is analytic in R−, K̃−(μ+
mn) is just a finite constant, so the entire left-hand

side is regular in R+. Also, the singularity that p̂+
o had in R− is cancelled by the

corresponding zero of the bracketed term on the right. This second term on the right-
hand side is thus appropriately analytic in R−. As formulated, (3.27) is regular in S,
so by the usual analyticity arguments each side is equal to some common function
that is analytic in the entire complex s-plane.

By the extended Liouville’s theorem (e.g. Noble 1988), which requires such functions
to be polynomials, we have

U (s)K̃+(s)ξ̂+(s) − p̂+
o (s)

K̃−(μ+
mn)

=
p̂−

o (s)

K̃−(s)
+ p̂+

o (s)

[
1

K̃−(s)
− 1

K̃−(μ+
mn)

]

=

N∑
k=0

aks
k as |s| → ∞. (3.28)

The next step is to use the asymptotic forms of the above expressions to determine
the ak in the sum. All the terms in (3.28) must have the same behaviour for large |s|,
so we consider only the first term, which is the easiest to analyse. Asymptotic forms of
certain sub-components of (3.22) are provided in the Appendix, § A.2. To find K̃+(s)
for large |s|, we start by considering K(s). In the strip S, λ3ω has a positive imaginary
part (see the argument made before (3.9)), so for |s| → ∞ the Hankel function ratio
involving M3 in (3.22) is negative (using (A 3)), and thus K(s) can be approximated
as K(s) ≈ (1 − sM2)

2/λ2 + (1 − sM3)
2/λ3. This gives K(s) ∼ s for large |s| in S. From

(3.24) and (3.25) we have U (s) ∼ s as |s| → ∞. Thus K(s)/U (s) ∼ 1 as |s| → ∞, which
gives K̃+(s) = K̃−(s) ∼ 1, with the phase remaining the same, as |s| → ∞. To find the

large-|s| behaviour of ξ̂+(s), we use the Kutta condition (2.21) and the definition of

the Fourier transform (3.1), which gives ψ̂(1, s) ∼ s−5/2. Using this in (3.9) for r > 1
indicates that B3(s) ∼ s−5/2, since Im [λ3ω] > 0. Also, since λ3(s) ∼ s as |s| → ∞ by

(3.5), from (3.14b) we conclude that ξ̂+(s) ∼ s−5/2 as |s| → ∞. Thus

U (s)K̃+(s)ξ̂+(s) ∼ s1+0−5/2 ∼ s−3/2 as |s| → ∞. (3.29)

This requires ak = 0, for all k, in (3.28), which upon application of (3.16) yields

ξ̂+(s) = B+
mnΨmn(1)

1 − μ+
mnM2

(μ+
mn − s)K̃−(μ+

mn)K̃+(s)U (s)
. (3.30)

The same procedure may be repeated using (2.8) to obtain the no-vortex-shedding
solution. Introducing the complex vortex shedding parameter γ used by Gabard &
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Figure 5. The zeros (◦) and the poles (×) of (3.22) in the complex plane as δ changes from
δ → π/2 to δ → 0. The parameters are the same as in figure 3 with (a) δ = π/2, (b) π/3,
(c) π/6 and (d ) π/18. Note how the instability zeros and pole lying in the fourth quadrant
tend to move from R− to R+ between (c) and (d ) which requires deformation of Γ . Also,
the complex conjugates of the instability zeros/pole can be seen in (a), which correspond to
decaying convective instability modes and are not included in the analysis.

Astley (2006) and Rienstra (1984) generalizes (3.30) to

ξ̂+(s) = B+
mnΨmn(1)

1 − μ+
mnM2

(μ+
mn − sz2

)K̃−(μ+
mn)K̃+(s)U (s)

(
s − sz2

μ+
mn − s

+ γ

)
, (3.31)

where 0 < |γ | < 1. The special cases are γ = 1, which reduces to (3.30) and is the full
Kutta condition, and γ = 0, the no-vortex-shedding condition.

The physical solutions we seek are for real-valued ω, which corresponds to δ → 0.
This rotates the inverse transform contour Γ in figure 5(a), to be parallel to the real
axis (see figure 4a). As a result Γ now extends from −∞ + 0i to ∞ − 0i, crossing the
real s-axis at some intermediate point so that analytic continuity is preserved. Figure 5
depicts how the various poles and zeros of the kernel move as δ → 0. The instability
zeros/pole do not move with this rotation and so Γ must be deformed around
them to ensure they remain in R− and analytic continuity is preserved (figure 5d ). In
practice, however, a simple application of the residue theorem is sufficient to explicitly
identify the contribution of these instability modes. We must also be aware of the
movement of the acoustic poles and zeros and account for their crossing, if any, as
Γ is rotated. In a related problem, Munt (1977) carried out an extensive asymptotic
and numerical analysis to locate the kernel zeros and poles for a wide range of flow
parameters and different δ to conclude that the acoustic zeros/poles do not cross Γ
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as δ → 0. Such an analysis is intractable in cases like the present (e.g. Taylor et al.
1993). However, we have made careful observations of the movement of acoustic
zeros/poles as δ varies from π/2, where causality is satisfied, to δ = 0, to choose Γ .
Experiments where a pole/zero was purposely placed on the wrong side of Γ yielded
a final solution that clearly violated causality, which also supports our choice of Γ in
figure 4(b).

The solution of the scattered acoustic potential field is then found by first
substituting (3.30) and (3.18) into (3.9) and then using (3.2) to arrive at

ψa(r, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ω

2πi

∫
Γ

(1 − sM2)
2

(1 − sM1)

T1(r, s)ξ̂+(s)

λ2

exp(iωsz) ds for r < h,

ω

2πi

∫
Γ

(1 − sM2)
T2(r, s)ξ̂+(s)

λ2

exp(iωsz) ds for h< r < 1,

ω

2πi

∫
Γ

(1 − sM3)
T3(r, s)ξ̂+(s)

λ3

exp(iωsz) ds for r > 1,

(3.32)

where

T1(r, s) =
Jm(λ1ωr)

Jm(λ1ωh)

H(1)
m (λ2ωh) + R(s)Jm(λ2ωh)

H(1)′
m (λ2ω) + R(s)J′

m(λ2ω)
, (3.33a)

T2(r, s) =
H(1)

m (λ2ωr) + R(s)Jm(λ2ωr)

H(1)′
m (λ2ω) + R(s)J′

m(λ2ω)
, (3.33b)

T3(r, s) =
H(1)

m (λ3ωr)

H(1)′
m (λ3ω)

. (3.33c)

The solution for the scattered pressure is easily found from (3.32) via the linearized
unsteady Bernoulli equation,

p = −
(

∂ψ

∂t
+ M

∂ψ

∂z

)
. (3.34)

Hence, the scattered acoustic pressure field has the following general solution:

pa(r, z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω2

2π

∫
Γ

(1 − sM2)
2

λ2

T1(r, s) ξ̂+(s) exp(iωsz) ds for r < h,

ω2

2π

∫
Γ

(1 − sM2)
2

λ2

T2(r, s) ξ̂+(s) exp(iωsz) ds for h < r < 1,

ω2

2π

∫
Γ

(1 − sM3)
2

λ3

T3(r, s) ξ̂+(s) exp(iωsz) ds for r > 1.

(3.35)

As mentioned above, the instability part of the scattered field is obtained by
applying residue theorem for sz1

and sz2
, which appear as simple poles in (3.32)

and (3.35) via the U (s) factor in (3.30). For incident vorticity waves, however,
since sz1

was not included in (3.25), the scattered field due to the inner vorticity
wave is included in (3.32). The expression for the scattered instability potential is
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Figure 6. Schematic of the infinite shroud with co-flow used to obtain
the acoustic incident waves.

then

ψs(r, z) = ω
∑

s ′

exp(iωs ′z) lim
s→s ′

[ξ̂+(s)]

× H (z)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − s ′M2)
2

(1 − s ′M1)
lims→s ′[T1(r, s)/λ2] for r < h,

(1 − s ′M2) lims→s ′[T2(r, s)/λ2] for h < r < 1,

(1 − s ′M3) lims→s ′[T3(r, s)/λ3] for r > 1.

(3.36)

Similarly, the scattered instability pressure is

ps(r, z) = iω2
∑

s ′

exp(iωs ′z) lim
s→s ′

[ξ̂+(s)]

× H (z)

⎧⎪⎨
⎪⎩

(1 − s ′M2)
2 lims→s ′[T1(r, s)/λ2] for r <h,

(1 − s ′M2)
2 lims→s ′[T2(r, s)/λ2] for h < r < 1,

(1 − s ′M3)
2 lims→s ′[T3(r, s)/λ3] for r > 1,

(3.37)

where

lim
s→s′
si �=s′

[ξ̂+(s)] = B+
mnΨmn(1)

(1 − μ+
mnM2)(s

′ − sp)

(μ+
mn − s ′)K̃−(μ+

mn)K̃+(s ′)(s ′ − si)
, (3.38)

where s ′ and si are respectively sz1
or sz2

or vice versa depending upon which instability
wave pressure field is sought. The total scattered potential and pressure are then

ψ(r, z) = ψa(r, z) + ψs(r, z) and p(r, z) = pa(r, z) + ps(r, z), (3.39)

with the total field obtained by simply adding the incident field. Though not obvious
by visual inspection, it can be confirmed that these solutions degenerate to those of
Munt (1977) and Taylor et al. (1993) in the appropriate limits (Samanta 2008).

4. Incident waves
We first analyse the acoustic-type incident wave in the following subsection, which

has previously been studied only for m = 0 in the long-wavelength limit for this
configuration. We then take up the instability-type case in § 4.2.

4.1. Acoustic-type incident waves

In this case the incident waves are the right-propagating modes in an infinite shroud
with two concentric streams as shown in figure 6. The starting points are the
right-moving + components of (2.10), which were expressed in terms of the unknown
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mode shape functions Ψmn. The governing differential equations (2.15a, b) are satisfied
by

Ψmn(r) =

⎧⎪⎪⎨
⎪⎪⎩

Jm(rαmn), r <h,(
1 − μ+

mnM1

1 − μ+
mnM2

)
Jm(hαmn)

[
Jm(rβmn)H(1)′

m (βmn) − H(1)
m (rβmn)J′

m(βmn)

Jm(hβmn)H(1)′
m (βmn) − H(1)

m (hβmn)J′
m(βmn)

]
, r >h,

(4.1)
where for axial wavenumber μ+

mn the radial wavenumbers

αmn = ω

√
(1 − μ+

mnM1)2 − μ+
mn

2 and βmn = ω

√
(1 − μ+

mnM2)2 − μ+
mn

2 (4.2)

satisfy the hard wall (2.16) and the dynamic (2.20) boundary conditions. The dispersion
relationship, which is obtained via (2.19), provides the final constraint on α, β and μ:

Λ(z) ≡ z2(1 − zM1)
2Jm(hz1)[J

′
m(hz2)H

(1)′
m (z2) − H(1)′

m (hz2)J
′
m(z2)]

− z1(1 − zM2)
2J′

m(hz1)[Jm(hz2)H
(1)′
m (z2) − H(1)

m (hz2)J
′
m(z2)] = 0, (4.3)

with

z1 = ω
√

(1 − zM1)2 − z2 and z2 = ω
√

(1 − zM2)2 − z2. (4.4)

For any m, the nth real-valued μ+
mn roots of (4.3) represents the propagating mode

(m, n). The requirement that the radial wavenumbers α and β in (4.2) be real valued
and positive quantities restricts μ+

mn as

− 1

1 − M2

<μ+
mn <

1

1 + M1

. (4.5)

Finally, to be incident on the shroud exit the waves must have non-negative group
velocity,

dω

dμ+
mn

> 0. (4.6)

The amplitude B+
mn in (2.14) is taken to be unity for incident acoustic waves.

4.2. Instability-type incident waves

Kelvin–Helmholtz instability incident waves satisfy the same equations and boundary
conditions as the acoustic modes presented in the last section, but special
considerations are warranted to cope with their exponential growth. To construct
a finite-amplitude incident wave we must consider a finite-length inner vortex sheet.

We assume that the origin of the instability wave is an inner nozzle lip at a
distance zo upstream of the shroud exit. This upstream distance is assumed to be
sufficiently large to decouple the nozzle from the shroud exit. The wavenumber of
this instability wave matches sp defined in (3.24), which is the pole of the kernel (3.22)
corresponding to the inner-sheet instability mode. This pole is a zero of the kernel
for the configuration shown in figure 7. For incident quasi-plane waves as in Taylor
et al. (1993), the incident instability wave can be simply obtained from (2.14) since
Ψ01(r) = 1. The more general incident waves sought here require explicit solutions for
Ψmn(r), which can also be solved using a Wiener–Hopf formulation.

Since a similar problem setup (figure 7) is described in detail by Taylor et al. (1993),
and extension to finite wavelengths is as discussed in § 3 of the present paper for
the finite-shroud problem, only a cursory overview is provided here. The governing



424 A. Samanta and J. B. Freund

Cylindrical wall

Nozzler

z

M2

M1

h

1

Jet

Co-flowIncident wave

Vortex sheet

Figure 7. Schematic of the infinite shroud with an inner nozzle and co-flow used to obtain
the instability incident waves.

equations are the same as (2.1a, b). The wall boundary condition (2.2) is applied to the
inner and outer surfaces of the nozzle and the outer, now-infinite, shroud. The usual
vortex sheet boundary conditions (2.3) and (2.4), the nozzle-lip Kutta condition (2.7),
and the causality requirement complete the problem description. The solution then
follows the procedure described in § 2.1 and § 3, yielding scattered acoustic potential

ψa(r, z) =

⎧⎪⎪⎨
⎪⎪⎩

ω

2πi

∫
Γ

(1 − sM1)
Y1(r, s)β̂+(s)

λ1

exp(iωsz) ds for r <h,

ω

2πi

∫
Γ

(1 − sM2)
Y2(r, s)β̂+(s)

λ2

exp(iωsz) ds for h< r < 1.

(4.7)

This is nearly the same as (3.32), but β̂+(s) is the Fourier-transformed vortex sheet
displacement for this auxiliary problem and

Y1(r, s) =
Jm(λ1ωr)

J′
m(λ1ωh)

, (4.8a)

Y2(r, s) =
Jm(λ2ωr)H(1)′

m (λ2ω) − H(1)
m (λ2ωr)J′

m(λ2ω)

J′
m(λ2ωh)H(1)′

m (λ2ω) − H(1)′
m (λ2ωh)J′

m(λ2ω)
. (4.8b)

The transformed vortex sheet displacement is given by

β̂+(s) = Ψmn(h)
(1 − μ+

mnM1)

(μ+
mn − s)K̃−

1 (μ+
mn)K̃+

1 (s)(s − so)
. (4.9)

Here μ+
mn is the wavenumber of the acoustic wave incident from inside the nozzle that

is used to seed the instability wave in this auxiliary problem. In (4.9), so is the zero
corresponding to the shear layer instability, which matches the pole sp for the finite
shroud in (3.24), and Ψmn(r) = Jm(αmnr) with αmn being a solution of Λ(z) = J′

m(z) = 0.
This incident acoustic mode, which only propagates for ω > (1 − M2

1 )1/2αmn sets a
lower bound of ω = (1 − M2

1 )1/2αm1 for the vorticity frequency. The kernel K1(s) in
(4.9) is

K1(s) = ω

{
(1 − sM1)

2

λ1

Jm(λ1ωh)

J′
m(λ1ωh)

− (1 − sM2)
2

λ2

Jm(λ2ωh)H(1)′
m (λ2ω) − H(1)

m (λ2ωh)J′
m(λ2ω)

J′
m(λ2ωh)H(1)′

m (λ2ω) − H(1)′
m (λ2ωh)J′

m(λ2ω)

}
. (4.10)
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It is clear from (4.9) that so appears as a simple pole in (4.7), so the scattered instability
potential is easily obtained simply via its residue,

ψs(r, z) = ω exp(iωsoz) lim
s→so

[β̂+(s)]

× H (z)

{
(1 − soM1) lims→so

[Y1(r, s)/λ1] for r <h,

(1 − soM2) lims→so
[Y2(r, s)/λ2] for h< r < 1,

(4.11)

to yield the incident instability wave for the full problem. Comparing (4.11) with
(2.14), it is easy to see that

B+
mn = ω exp(−iωspzo) lim

s→sp

[β̂+(s)], (4.12)

and the mode shape is

Ψmn(r) = H (z − zo)

{
(1 − spM1) lims→sp

[Y1(r, s)/λ1] for r <h,

(1 − spM2) lims→sp
[Y2(r, s)/λ2] for h< r < 1,

(4.13)

with μ+
mn = so = sp . The factor exp(−iωspzo) appears in (4.12) since the vortex sheet

originates at zo. Unlike in § 3.3 we are not concerned with the scattered acoustic field
here and thus the full solution of this auxiliary problem is unnecessary.

5. Near-field solutions
The numerical methods to accurately evaluate (3.35) are summarized in the

Appendix. In this section, we present the near-field solutions for pressure for incident
acoustic and vorticity waves. These solutions support exponentially growing instability
waves, which are of course not physically realizable. However, the utility of the
model depends primarily upon how well the shape and dispersion characteristics
of the instability waves represent the pressure fields associated with the turbulence
structures at the shroud exit. This near-field pressure similarity has recently been
confirmed by matching the predicted near fields of instability waves with the near-
field pressure of turbulence structures in a high-Reynolds-number jet (Suzuki &
Colonius 2006). In addition, studies on large coherent structures in turbulent shear
flows (e.g. Strange & Crighton 1983; Gaster, Kit & Wygnanski 1985) have shown
that linear theory can accurately predict the local transverse mode shapes and phase
characteristics of instabilities along with their dispersion relations, even for strong
nonlinear disturbances. These aspects have also been discussed in detail by Crighton
(1992) in the context of linear models such as the present. Amplitude predictions
would, of course, require additional procedures which are beyond the scope of the
current theoretical study and would probably involve large-scale simulations.

5.1. Incident acoustic wave

For an example solution, we choose h = 0.65, M1 = 0.9, M2 = 0.25, M3 = 0.1, and
ω = 4.5 with the azimuthal mode number m = 1. For these input parameters there
is only one right-propagating acoustic mode (n = 1). Figure 8(a) shows the incident
acoustic wave and figure 8(b) shows the entire near-field acoustic component of
pressure. The reflected waves moving leftward inside the shroud and part of the
scattered wave field are shown in figure 8(c). Figures 8(d ) and 8(e) show the instability
waves excited on the inner and outer vortex sheets, respectively. The outer vortex
sheet is perturbed with shorter wavelengths, as expected for the selected flow Mach
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Figure 8. Real part of the pressure for the incident acoustic mode (1, 1): (a) the incident
wave; (b) the acoustic part of the pressure field; (c) the scattered and reflected acoustic pressure
waves; (d ) the instability wave of the inner shear layer; (e) the instability wave of the outer
shear layer; and (f ) the total pressure field. Grey levels indicate pressure between ±0.4 for an
incident wave with unit amplitude.

numbers. The vorticity wave on the outer sheet is also of higher amplitude, which can
be seen in figure 8(f ), which shows the complete solution. The outer wave is expected
to be of much higher amplitude since it is seeded at a sharp edge, and thus should be
more receptive than the inner. For example, at z = 2, the outer wave has an amplitude
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almost 108 higher than the inner. The instability waves grow exponentially in z but
decay exponentially in the r-direction yielding the wedge shapes for the influence of
the vorticity waves.

5.2. Incident vorticity wave

For this demonstration, we retain the same flow parameters as in the previous
section for the acoustic wave. Figure 9(a) shows the incident vorticity wave that
originates from the assumed inner nozzle lip at zo = −1.5. Figure 9(b) shows the
scattered acoustic field generated by the incident instability wave together with the
(r > 1, z > 0) portion of this instability wave which, unlike in the preceding subsection,
is computed in conjunction with the scattered acoustic field (see the Appendix, § A.1).
Most of the energy of the incident vorticity wave transmits, but a portion is scattered
into acoustic waves that seem to radiate outwards from the shroud edge and reflect
back inside of the shroud (figure 9c). Figure 9(d ) shows the pressure associated with
the outer vortex sheet instability and figure 9(e) shows the total pressure field, a
superposition of the components shown in figures 9(b) and 9(d ). The vorticity waves
in z > 0 are of more comparable magnitude in this case. At z = 2 the outer wave
amplitude is about 104 higher than the inner.

Figure 10 shows the field generated when there is no propagating reflected mode.
The parameters are selected with reference to figure 14(a) so that the data point lies
in the ‘no reflection’ zone. The non-propagating reflected waves are seen to decay
over a very short upstream distance in figure 10(c). Figure 10(f ) shows the plot of
the kernel poles and zeros for this case. As expected, there is no pole lying on the
real axis in between the left branch cut and the (Γ ) contour crossover point, which
is where the propagating reflected modes are found. In any such situation a pole is
always present between the branch points s−

1 and s−
2 , as can be seen in figure 10(f ),

but it lies on the left branch cut. With changing parameters, this pole can move along
the real axis. As it leaves the left branch cut it becomes a valid propagating reflecting
mode for the system. However, for a given set of parameters, there might be multiple
such poles with some of them as propagating modes and the rest lying on the cut
(e.g. figure 4b).

6. Shroud-exit reflectivity
In this section we consider the acoustic wave reflected by the shroud exit, which

potentially closes a resonance loop as discussed in § 1.1.

6.1. Reflectivity formulation

Reflection coefficients for both acoustic and vortical incident waves can be defined
using the same framework. For each pair of incident and reflected modes we first
consider the modal decomposition of the pressure field inside the shroud:

p(r, z) =

∞∑
m=−∞

∞∑
n=1

[A+
mnexp(iμ+

mnωz) + A−
mnexp(iμ−

mnωz)]Ψmn(r), (6.1)

which is analogous to (2.10) for the velocity potential. Here A±
mn are the right- (+)

and left- (−) propagating pressure wave amplitudes. The reflection coefficient for the
(m, l) mode reflection of an incident (m, n) mode is defined as

Rmnl =
A−

ml

A+
mn

. (6.2)
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Figure 9. Real part of the pressure for the incident instability mode for h = 0.65,M1 = 0.09,
M2 = 0.25, M3 = 0.1, ω = 4.5,m = 1: (a) the incident wave; (b) the acoustic part of the pressure
field and inner instability wave superimposed; (c) the scattered and reflected acoustic pressure
waves; (d ) the instability wave of the outer shear layer; and (e) the total pressure field. Grey
levels indicate pressure between ±0.4. The seed acoustic wave (see § 4.2) has unity amplitude.

The incident wave amplitude A+
mn is straightforward to identify. By applying (3.34)

to (2.14), we can write the pressure field inside the shroud as

pi(r, z) =

{
iω(1 − μ+

mnM1)B
+
mnΨmn(r) exp(iωμ+

mnz) for r <h,

iω(1 − μ+
mnM2)B

+
mnΨmn(r) exp(iωμ+

mnz) for h< r < 1.
(6.3)
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Figure 10. (a–e) Same as figure 9 for M1 = 0.7, M2 = 0.25, M3 = 0.1, h = 0.8, ω = 3.5, and
m = 1. (f ) Location of the zeros (◦) and poles (×) of K(s) in (3.22) as δ → 0.

Comparing (6.3) to (6.1) we see that the amplitude of the incident wave is thus

A+
mn =

{
iωB+

mn(1 − μ+
mnM1) for r <h,

iωB+
mn(1 − μ+

mnM2) for h< r < 1.
(6.4)

For incident acoustic waves we take B+
mn = 1, while for incident vorticity waves it

is given by (4.12). Consequently, for incident instability waves A+
mn is the pressure

amplitude at the shroud exit.
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Computing the pressure amplitude A−
ml of the reflected mode is more involved. The

net scattered pressure is the sum of the acoustic and instability parts as given by
(3.35) and (3.37), respectively. The contour integral in (3.35) can be evaluated for
individual wave components of the full solution using the residue theorem. Since we
seek amplitudes of the modes inside the shroud (r < 1, z < 0), only the poles lying
below Γ in the lower-half-plane (R+) are needed. This is because the transformed
fields, as defined, are analytic in R− for z < 0. So, the poles corresponding to the
waves inside the shroud (z < 0) must only lie in R+. In order to be non-decaying they
must also lie on the real axis between the left and right branch cuts (see figure 3b).
Reflectivities are only well-defined for these propagating reflected modes (m, l), so
to compute them the field inside the shroud can be written via the residue theorem
as

p(r, z) = −iω2

∞∑
l=1

∞∑
m=−∞

exp(iωμ−
mlz) (1 − μ−

mlM2)
2

× lim
s→μ−

ml

[ξ̂+(s)]

{
lims→μ−

ml
(T1(r, s)/λ2) for r < h,

lims→μ−
ml

(T2(r, s)/λ2) for h < r < 1.
(6.5)

The next task is to write both cases of (6.5) in a form similar to (6.1) to identify
A−

ml . The shapes of the reflected modes inside the shroud are the same as the incident
acoustic modes given by (4.1), but for a wavenumber of μ−

ml , and therefore are
already known. To evaluate the limits in (6.5) we start with (3.5), where we can solve
λ2

p = (1 − sMp)2 − s2 for s as

s =
−Mp ±

√
1 −

(
1 − M2

p

)
λ2

p

1 − M2
p

for p = 1, 2. (6.6)

Likewise, from (4.2) it can be shown that

μ−
ml =

−M1 −
√

1 −
(
1 − M2

1

)
α2

ml

/
ω2

1 − M2
1

=
−M2 −

√
1 −

(
1 − M2

2

)
β2

ml

/
ω2

1 − M2
2

. (6.7)

Together, these indicate that as s → μ−
ml

λ1 → αml/ω and λ2 → βml/ω. (6.8)

To explicitly evaluate the factors involving T1 in (6.5) for the r < h case we start with
its definition (3.33a), substitute R(s) from (3.19) and employ (4.3). Then taking the
limit as s → μ−

ml yields

lim
s→μ−

ml

T1(r, s) = βml(1 − μ−
mlM1)

2Ψml(r)
J′
m(βmlh)H(1)

m (βmlh) − H(1)′
m (βmlh)Jm(βmlh)

Λ′(μ−
ml)

, (6.9)

where we have also used (4.1) for r < h and (6.8). Substituting (6.9) in (6.5) yields

p(r, z) = −iω3

∞∑
l=1

∞∑
m=−∞

exp(iωμ−
mlz)(1 − μ−

mlM1)
2(1 − μ−

mlM2)
2ξ̂+(μ−

ml)

× J′
m(βmlh)H(1)

m (βmlh) − H(1)′
m (βmlh)Jm(βmlh)

Λ′(μ−
ml)

Ψml(r). (6.10)
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Comparing this with (6.1) shows that

A−
ml = −iω3 (1 − μ−

mlM1)
2(1 − μ−

mlM2)
2ξ̂+(μ−

ml)

Λ′(μ−
ml)

× [J′
m(βmlh)H(1)

m (βmlh) − H(1)′
m (βmlh)Jm(βmlh)] for r < h. (6.11)

Similarly, for r > h we start by substituting (3.19) into (3.33b). Then we apply the
limit

lim
s→μ−

ml

[
λ(s)

H(1)′
m (λ2ωh)

H(1)′
m (λ2ω)

Jm(λ1ωh) − H(1)
m (λ2ωh)

H(1)′
m (λ2ω)

J′
m(λ1ωh)

]

= λ(s)
J′
m(λ2ωh)

J′
m(λ2ω)

Jm(λ1ωh) − Jm(λ2ωh)

J′
m(λ2ω)

J′
m(λ1ωh), (6.12)

which is obtained from Λ(s) → 0 (see (4.3)) as s → μ−
ml . Additional algebraic

manipulations lead to

lim
s→μ−

ml

T2(r, s) = αml

(1 − μ−
mlM2)

3

(1 − μ−
mlM1)

Ψml(r)

Λ′(μ−
ml)

J′
m(βml)H

(1)
m (βmlh) − H(1)′

m (βml)Jm(βmlh)

Jm(αmlh)

× λ(μ−
ml)H

(1)′
m (βmlh)Jm(αmlh) − J′

m(αmlh)H(1)
m (βmlh)

H(1)′
m (βml)

. (6.13)

Substituting (6.13) in (6.5) yields the pressure for the r > h case,

p(r, z) = −iω3

∞∑
l=1

∞∑
m=−∞

exp(iωμ−
mlz)

(1 − μ−
mlM1)(1 − μ−

mlM2)
3

Λ′(μ−
ml)λ(μ−

ml)
ξ̂+(μ−

ml)

× J′
m(βml)H

(1)
m (βmlh) − H(1)′

m (βml)Jm(βmlh)

Jm(αmlh)

× λ(μ−
ml)H

(1)′
m (βmlh)Jm(αmlh) − J′

m(αmlh)H(1)
m (βmlh)

H(1)′
m (βml)

Ψml(r), (6.14)

which upon comparison with (6.1) gives

A−
ml = −iω3 (1 − μ−

mlM1)(1 − μ−
mlM2)

3

Λ′(μ−
ml)λ(μ−

ml)
ξ̂+(μ−

ml)
J′
m(βml)H

(1)
m (βmlh) − H(1)′

m (βml)Jm(βmlh)

Jm(αmlh)

×λ(μ−
ml)H

(1)′
m (βmlh)Jm(αmlh) − J′

m(αmlh)H(1)
m (βmlh)

H(1)′
m (βml)

for r > h. (6.15)
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Finally, substituting (6.4), (6.11) and (6.15) into (6.2) yields the reflective coefficients:

Rmnl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣ω2 (1 − μ−
mlM1)

2(1 − μ−
mlM2)

2ξ̂+(μ−
ml)

B+
mn(1 − μ+

mnM1)Λ′(μ−
ml)

× [J′
m(βmlh)H(1)

m (βmlh) − H(1)′
m (βmlh)Jm(βmlh)]

∣∣∣∣ for 0 < r < h,

∣∣∣∣ω2 (1 − μ−
mlM1)(1 − μ−

mlM2)
3ξ̂+(μ−

ml)

B+
mn(1 − μ+

mnM2)Λ′(μ−
ml)λ(μ−

ml)

×
[
λ(μ−

ml)H
(1)′
m (βmlh)Jm(αmlh) − J′

m(αmlh)H(1)
m (βmlh)

H(1)′
m (βml)

]

×
[

J′
m(βml)H

(1)
m (βmlh) − H(1)′

m (βml)Jm(βmlh)

Jm(αmlh)

]∣∣∣∣ for h < r < 1,

(6.16)

where ξ̂+(μ−
ml) is obtained from the final stage of the Wiener–Hopf solution in (3.30).

6.2. Reflectivity results

The computational methods for computing reflectivities are summarized in the
Appendix, § A.3. In this section we consider results for specific incident waves.

6.2.1. Incident acoustic wave

One interesting aspect of the reflectivities is that the shroud exit is non-reflecting –
completely ‘transparent’ – for certain parameters. Consider for example, the
reflectivities plotted in figure 11. For this case, only modes with m � 3 fall into
the frequency range 0 < ω < 5 plotted. For any m there is only one radial mode
that is right propagating, so only three incident modes (1, 1), (2, 1) and (3, 1) are
considered. For each m, only reflected mode (m, l) = (m, 1) propagates, so there are
only three reflection coefficients R111, R211 and R311. These are plotted in figure 11,
separately for r < h and h < r < 1. These reflectivities are undefined over finite
ranges of frequencies for which there is no propagating reflected wave unlike, for
example, the single-jet reflectivity curves of Munt (1990). In these regions only
decaying reflected modes are available, for which reflection coefficients are undefined.
It is the discontinuity in the mean flow inside the shroud that significantly reduces
the number of propagating modes, leading to these regions for which the shroud exit
is effectively transparent. These non-reflecting zones reduce for smaller h as can be
seen in figure 12. For undefined Rmnl(ω), either the corresponding incident or reflected
mode is non-propagating, or both. The reflectivities generally decrease with ω, though
not always monotonically (figure 11). The higher-order azimuthal modes (larger m)
generally have lower reflectivities, as expected. Also the reflectivities here are higher
in the core jet than in the co-flow, though this depends on the parameters chosen.
This is important for the jet resonance problem discussed in § 1 because it provides
an estimate of how much acoustic energy leaks, and therefore must be replenished by
coupling with the jet.

6.2.2. Incident vorticity wave

One of our main concerns is how much of the instability wave energy is reflected
into acoustic modes. The reflection coefficients of the incident vorticity waves for
different m, reflected back into the (1, 1) acoustic mode inside the shroud, are shown
in figure 13 for 0 <ω < 5. We denote the incident instability modes as (m, v), where v

stands for vorticity. Conversion of incident vorticity modes into reflected propagating
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Figure 11. The reflection coefficients, Rmnl for various propagating incident acoustic modes:
——, R111; – ·–, R211; – –, R311 for (a) r < h and (b) r >h. Parameters are M1 = 0.9, M2 = 0.25,
M3 = 0.1, and h = 0.65.
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Figure 12. Same as figure 11 but for M1 = 0.6, M2 = 0.25, M3 = 0.1, and h = 0.9.
In addition . . . , R121.
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Figure 13. Same parameters as in figure 11, but for incident instability modes (m, v).
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Figure 14. Zones of finite and zero reflectivity for M2 = 0.25, M3 = 0.1, and m = 1:
(a) h = 0.8; (b) h = 0.6. Dashed lines show extrapolations.

acoustic modes is more restrictive and thus the frequency ranges for finite reflectivities
is narrower here than for incident acoustic modes (although this is not apparent in
figure 13). Also, note that these reflectivities are smaller than the acoustic mode
reflectivities. Of course, since in realistic flows the pressures associated with vortical
structures are many times greater than acoustic pressures, these small reflectivities are
still potentially important.

To provide a clearer picture of the circumstances under which the shroud exit
is transparent to outgoing instabilities, we plot the boundary of this behaviour
in an M1–ω plane for two cases in figure 14. The intermittent character of the
boundary shown in these plots might explain the experimental observations, such
as of Bradshaw et al. (1968), who report strong subsonic shrouded resonances for
multiple ranges of jet Mach numbers under otherwise similar flow conditions. The
complex structure of the reflecting/non-reflecting boundary is set by whether or not
a particular propagating reflected acoustic mode exists, which in turn is governed
by the dispersion relation (4.3). The Bessel functions in (4.3) yield the quasi-periodic
behaviour seen in figure 14. For M1 = M2, there is always a reflecting mode, so we
expect the region of finite reflectivity to broaden as M1 → M2. This is seen in the
figure. We can also anticipate the trend toward more reflection possibilities for higher
ω. For ω → 0, only plane waves are possible, which cannot exist across multiple
streams. The matching condition between streams is more easily satisfied for higher
frequencies, and for ω → ∞ there is no effective restriction on the reflected modes.
Note that the no-incident cutoffs are dictated by the requirement that the acoustic
wave used to seed the incident vorticity wave be propagating inside the (virtual)
nozzle (see text after (4.9) for the cutoff expression). In actual situations the vorticity
wave may be reinforced by acoustic modes from elsewhere or by the non-propagating
evanescent modes for short shrouds. Thus there may be potential resonance situations
for frequencies below this cutoff.

6.2.3. Effect of suppressing vortex shedding at the shroud exit

It has been suggested that finite-thickness shear layers might not satisfy the full
Kutta condition at higher Strouhal numbers (e.g. Bechert & Pfizenmaier 1975). We
can make an assessment of the specific effect of the Kutta condition in our model
by suppressing the vortex shedding. This is achieved by setting γ = 0 in (3.31)
which cancels the term (s − sz2

) in (3.31), suppressing any vortex shedding by the
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Figure 15. Effect of the Kutta condition on reflectivity for r > h: (a) incident acoustic
modes and (b) incident vorticity modes with the full Kutta condition γ = 1 (thick lines) and
suppressed vortex shedding γ = 0 (thin lines). Other parameters are same as in figures 11
and 13.

outer vortex sheet. Figure 15 compares the no-vorticity solutions with the full Kutta
condition solutions obtained previously. Suppressing vortex shedding is known to
increase radiation to the far field (Gabard & Astley 2006; Demir & Rienstra 2007).
Here it is seen to increase reflectivities. The other interesting aspect of note here is that
for incident acoustic modes reducing |γ | has more effect on reflectivities for higher ω,
unlike acoustic radiation which is affected more at lower frequencies (Rienstra 1983).
In contrast, incident vorticity mode reflectivities seem to be more affected at lower ω.

7. Conclusions
The main result of this study is the reflectivity of vorticity waves back into the

shroud as acoustic modes. These reflectivities are lower than the corresponding
reflectivities of outgoing acoustic modes, but the vorticity waves would be expected
to contain many times more energy in a turbulent jet, so these small reflectivities
are potentially important. The most notable aspect of these reflectivities are the
bands in M1–ω coordinates for which there is no reflection. This switch over between
reflecting and transparent behaviour of the shroud exit might explain the sensitivities
of observed howling resonances to Mach numbers (Bradshaw et al. 1968). For jet
diameters larger than about half the shroud diameter, these transparent conditions
seem to become prevalent.

The analysis here provides an indication of when a strong feedback loop might exist
inside the shroud which, however, does not necessarily mean resonance. An obvious
extension of this study would be to couple the nozzle of the auxiliary problem of § 4.2
with the shroud exit analysis and seek to find resonance conditions. The nozzle,
although used to seed the vorticity wave, has not been considered further in the
analysis. The reflected acoustic modes travel upstream and should undergo the mode
conversion of acoustic to vortical at the nozzle lip at the given frequency. It would
also be of interest to consider extension to supersonic flow conditions for which
resonances are also observed.

Financial support for this work has been provided by AFOSR through grant
number FA 9550-05-1-0215.
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Appendix. Numerical procedures
A.1. Kernel split functions and contour integrals

The kernel (3.22) appears to defy explicit factorization, so K̃+(s) is evaluated using
the general factorization formula (e.g. Noble 1988):

log K̃+(s) = − 1

2πi

∫
C

log[K(σ )/U (σ )]

σ − s
dσ, (A 1)

where C is the integration path from −∞ + 0i to ∞ − 0i in S, similar but distinct from
Γ . C must lie above Γ . K̃−(s) is then obtained from (3.23). The factor U (σ ) in (A 1)
is from (3.24) and thus removes the instability zeros and pole for the incident acoustic
case, so C does not need to be deformed to account for them. For the incident
vorticity case, however, for reasons discussed in § 3.3, U (σ ) is given by (3.25). In this
case, C must be deformed around both sz1

and sp . The point where C crosses the
real axis has to be carefully chosen to preserve analytic continuity (see the discussion
after (3.30)). Also, a large number of acoustic zeros and poles lie on the real axis
near the origin of the complex plane where the kernel integration is done. This would
put severe demands upon the adaptive quadrature routines were C to pass near to
them, so C is deformed in the same way as Γ in figure 4(b). The limits for the kernel
integrals are taken such that the contribution of the integrand becomes negligible
beyond the limits. An adaptive quadrature scheme using the trapezoidal rule has been
used to compute the kernel integrals. It was also confirmed that K̃(s) = K(s)/U (s)
in (A 1) does not cross the negative real axis on C, which is a condition that must be
satisfied (see Rienstra 2007).

The inverse transform integrals over Γ are only computed for near-field solutions of
§ 5. Apart from Γ being similar to C, but lying below, the inversion integrations need
to be computed over much smaller limits since the inversion integrand contribution
falls much faster with increasing |s| along Γ . The kernel integrations need to be
computed only once and then the inversion integrals may be computed for any
(r, z) pair (see (3.32), (3.35)). It is less computationally expensive here to compute
the inversion integrals at a fixed set of points without adaptive refinement and,
accordingly, a simple quadrature scheme is used to compute it.

A.2. Kernel approximations

The special functions are computed using standard routines but extra care is needed
for certain ranges of arguments. Computation of (3.22), for example, requires special
consideration of two factors:

K1 =
H(1)

m (λ2ω) + R(s)Jm(λ2ω)

H(1)′
m (λ2ω) + R(s)J′

m(λ2ω)
and K2 =

H(1)
m (λ3ω)

H(1)′
m (λ3ω)

. (A 2)

For arguments z with large imaginary part, Bessel functions behave like exp (|Im(z)|),
while the Hankel functions behave as exp (iz). The primary requirement is to use scaled
functions which compensate for these behaviours. However, for very large arguments,
when the round-off errors of the denominators of (A 2) become significant, the
asymptotic forms for large |λpω|, p = 1, 2, 3,

K1 ≈ i and K2 ≈ 8λ3ω + 4im2 − i

8iλ3ω − 4m2 − 3
, (A 3)

are used.
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A.3. Reflectivity computations

Computations of reflectivity coefficients using (6.16) are relatively straightforward and
less expensive, since as in the § 5 computations no inverse transform is necessary. The
kernel integrals, however, appear in the determination of ξ̂+(μ−

ml) (see (3.30)), where

the split kernels K̂−(μ+
mn) and K̂+(μ−

ml) need to be found using the procedures of
§ A.1, but only at μ+

mn and μ+
ml , respectively. This allows reflectivities to be computed

over ranges of ω as presented in § 6.2 with relatively little computation time.
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